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Introduction to Data Science
Introduction to Modeling and Algorithms

Joanna Bieri DATA101



.
.
.

.

.
.
.

.

Important Information

• Email: joanna_bieri@redlands.edu
• Office Hours: Duke 209 Click Here for Joanna’s Schedule

mailto:joanna_bieri@redlands.edu
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Announcements

If you are behind it is time to get 100% caught up! I will expect
to see you at one of the labs!
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Day 15 Assignment - same drill.

1 Make sure you can Fork and Clone the Day15 repo from
Redlands-DATA101

2 Open the file Day15-HW.ipynb and start doing the problems.
• You can do these problems as you follow along with the lecture

notes and video.
3 Get as far as you can before class.
4 Submit what you have so far Commit and Push to Git.
5 Take the daily check in quiz on Canvas.
6 Come to class with lots of questions!

https://github.com/Redlands-DATA101
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What is a Mathematical Model?

A model is used to explain the relationship between variables so that
we can make predictions.

• Is there a relationship between A and B?
• If I knew A could I predict B?

This lab follows the Data Science in a Box units “The Language of
Models and Fitting and Interpreting Models” by Mine
Çetinkaya-Rundel. It has been updated for our class and translated to
Python by Joanna Bieri.
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Linear Models:
A linear model can be described by a straight line.

𝑌 = 𝑚𝑋 + 𝑏
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Nonlinear Models:
A nonlinear model cannot be described by a straight line. It might be
modeled by a wide range of other functions!

𝑌 = 𝑓(𝑋)
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Paris Paintings Data

• Source: Printed catalogs of 28 auction sales in Paris, 1764 - 1780
(Historical Data)

• Data curators Sandra van Ginhoven and Hilary Coe Cronheim
(who were PhD students in the Duke Art, Law, and Markets
Initiative at the time of putting together this dataset) translated
and tabulated the catalogs

• 3393 paintings, their prices, and descriptive details from sales
catalogs over 60 variables



.
.
.

.

.
.
.

.

Historical Example

Two paintings very rich in composition, of a beautiful execution, and
whose merit is very remarkable, each 17 inches 3 lines high, 23 inches
wide; the first, painted on wood, comes from the Cabinet of Madame la
Comtesse de Verrue; it represents a departure for the hunt: it shows in
the front a child on a white horse, a man who gives the horn to gather
the dogs, a falconer and other figures nicely distributed across the
width of the painting; two horses drinking from a fountain; on the right
in the corner a lovely country house topped by a terrace, on which
people are at the table, others who play instruments; trees and
fabriques pleasantly enrich the background.
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Historical Example

Lets look at the information for the painting described above.

name sale lot position dealer year origin_author origin_cat school_pntg diff_origin ... peasant othgenre singlefig portrait still_life discauth history allegory pastorale other
2518 R1777-89a R1777 89 0.375527 R 1777 D/FL D/FL D/FL 0 ... 0 0 0 0 0 0 0 0 0 0
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Models as Functions
• We can represent relationships between variables using functions
• A function is a mathematical concept: the relationship between an

output and one or more inputs

Can we find a function that describes the relationship between
height and width of painting?
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Add a trendline
trendline='ols'

This uses Ordinary Least Squares fitting to find a reasonable line.

So the line that “fits” this data based on the code we ran is

𝐻 = 0.7808𝑊 + 3.6214
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Did we have to pick this trendline?

No there are other choices:
• ‘ols’: Ordinary Least Squares regression line (linear regression).
• ‘lowess’: Locally Weighted Scatterplot Smoothing (non-linear

regression).
• ‘rolling’: Rolling window calculations (e.g., rolling average, rolling

median).
• ‘expanding’: Expanding window calculations (e.g., expanding

average, expanding sum).
• ‘ewm’: Exponentially Weighted Moving Average (EWMA).

Some of these we will cover in the next few weeks, but some will wait
for DATA 201.
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Vocab for Modeling

• Response variable: Variable whose behavior or variation you are
trying to understand, on the y-axis

• Explanatory variables: Other variables that you want to use to
explain the variation in the response, on the x-axis

• Predicted value: Output of the model function
• The model function gives the typical (expected) value of the

response variable conditioning on the explanatory variables

• Residuals: A measure of how far each case is from its predicted
value (based on a particular model)

• Residual = Observed value - Predicted value
• Tells how far above/below the expected value each case is
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Residual Plot
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Models - upsides and downsides

• Models can sometimes reveal patterns that are not evident in a
graph of the data. This is a great advantage of modeling over
simple visual inspection of data.

• There is a real risk, however, that a model is imposing structure
that is not really there on the scatter of data, just as people
imagine animal shapes in the stars. A skeptical approach is always
warranted.

• Just because you fit a model does not mean you found a true
relationship.
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Variation around the model.

Variation or Uncertainty is just as important as the model, if not more!

Statistics is the explanation of variation in the context of what remains
unexplained.

• The scatter suggests that there might be other factors that
account for large parts of painting-to-painting variability, or
perhaps just that randomness plays a big role.

• Adding more explanatory variables to a model can sometimes
usefully reduce the size of the scatter around the model.
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How do we use models?

TWO MAIN USES:
• Explanation: Characterize the relationship between 𝑦 and 𝑥 via

slopes for numerical explanatory variables or differences for
categorical explanatory variables

• Prediction: Plug in 𝑥, get the predicted 𝑦
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Linear (Least Squares) Regression - Supervised Machine
Learning

Find a straight line that is the best fit for our data:

̂𝑦𝑖 = 𝑏0 + 𝑏1𝑥𝑖

We want to minimize the cost (reduce the sum of the residuals)

𝑐𝑜𝑠𝑡 = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2

where 𝑦𝑖 is the value from our sample data and ̂𝑦𝑖 is the value
predicted from our model.

Either exactly or using gradient descent we learn the values of 𝑏0 and
𝑏1 that are best.
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Train a Linear Regression Model

This happens in three steps

1 Data Preprocessing
2 Model Training
3 Analyze the output - predictions

from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import OneHotEncoder
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Preprocessing the Data

1 Select the variables that you wan to use (columns)
2 Decide what to do about NaNs or other strange data
3 (advanced) Think about rescaling and standardizing
4 Create the inputs and outputs (sometimes encode)
5 (advanced) Test - Train split
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Train the model

1 Create the base model, in this case LinearRegression()
2 Train the model using the training data
3 Look at the results.

X = DF_model['Width_in'].values.reshape(-1, 1)
y = DF_model['Height_in'].values

LM = LinearRegression()
LM.fit(X, y)

LM.coef_
LM.intercept_
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Our Paintings Example

This means that linear regression found the line

ℎ𝑒𝑖𝑔ℎ𝑡𝑖 = 3.6214055418381896 + 0.78079641 ∗ 𝑤𝑖𝑑𝑡ℎ𝑖

so given a width we could predict a height. There appears to be a
positive relationship between height and width - in general as the width
increases the height increases.
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Now we can use our model to make a prediction

Let’s say we know a painting had certain width, we can predict the
height
width = 33
width = np.array(width).reshape(-1,1)
LM.predict(width)

array([29.38768703])
width = 0
width = np.array(width).reshape(-1,1)
LM.predict(width)

array([3.62140554])
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Important values

• Slope: For each additional inch the painting is wider, the height is
expected to be higher, on average, by 0.781 inches.

• Intercept: Paintings that are 0 inches wide are expected to be
3.62 inches high, on average. (Does this make sense?)
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Correlation does not imply causation

Figure 1: Correlation

Source: XKCD, Cell phones

https://xkcd.com/925/
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Check the accuracy of your model

LM.score() uses the R^2 score:
• 𝑅2 is the coefficient of determination
• 𝑅𝑆𝑆 is the sum of squares of residuals
• 𝑇 𝑆𝑆 is the total sum of squares

We got a score of 0.6829467672722757
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What about Categorical Data?

Does the price of a painting depend on whether or not it was
landscape?

x = “landscape” or “not landscape”

y = height of painting.

The equation

̂𝑦 = 𝑏0 + 𝑏1"𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒"

does not make sense.



.
.
.

.

.
.
.

.

What about Categorical Data?

0 = “not landscape” 1 = “landscape”

Then we can plug in zero or one into the equation:

̂𝑦 = 𝑏0 + 𝑏1𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒
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What about Categorical Data?

Here is the result of training a linear regression to predict height given
whether or not a painting is landscape.

How do we interpret this result?

𝐻𝑒𝑖𝑔ℎ𝑡 = 22.68 − 5.65(𝑙𝑎𝑛𝑑𝑠𝐴𝐿𝐿)

So if landsALL = 0 (not a landscape) the paintings have an average
height of 22.68. If landsALL = 1 (it is a landscape) then the height on
average is reduced by 5.65 inches. We found that landscapes tend to
be shorter.
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More than two categories - One Hot Encoding

In the case above we could easily code the categorical to just be 0 or 1.
Because there were only two options.

If there are more than two options we have to choose a way to encode
the data. one-hot encoding
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More than two categories - School of Painting

(A = Austrian, D/FL = Dutch/Flemish, F = French, G = German, I =
Italian, S = Spanish, X = Unknown)
my_columns = ['school_pntg','price']
DF_model = DF[my_columns]

X = DF_model['school_pntg'].values.reshape(-1,1)
y = DF_model['price'].values

encoder = OneHotEncoder()
X = encoder.fit_transform(X)
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More than two categories - School of Painting

The encoded data puts a one in a location representing each category
in the data

['A', 'D/FL', 'F', 'G', 'I', 'S', 'X']

so

[1,0,0,0,0,0,0] = A
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More than two categories - School of Painting

A [1. 0. 0. 0. 0. 0. 0.]

D/FL [0. 1. 0. 0. 0. 0. 0.]

F [0. 0. 1. 0. 0. 0. 0.]

G [0. 0. 0. 1. 0. 0. 0.]

I [0. 0. 0. 0. 1. 0. 0.]

S [0. 0. 0. 0. 0. 1. 0.]

X [0. 0. 0. 0. 0. 0. 1.]
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More than two categories - School of Painting

LM = LinearRegression()
LM.fit(X, y)

print(LM.coef_)
print(LM.intercept_)

[-607.0226627 462.24135005 -265.17807213 -650.46710718
-304.23294435 2045.54876584 -680.88932952]

715.0226600517791
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More than two categories - School of Painting
What the heck does this mean?!?!?

Label Coef
A -607.0226627
D/FL 462.24135005
F -265.17807213
G -650.46710718
I -304.23294435
S 2045.54876584
X -680.88932952

We we can interpret this as the average base cost of a painting was
about 715.02, but if the painting was Austrian then on average it sold
from 607.02 less but if it was Spanish then on average it sold for
2045.55 more.


