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Introduction to Data Science
Modeling Nonlinear Relationships

Joanna Bieri DATA101
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Important Information

• Email: joanna_bieri@redlands.edu
• Office Hours: Duke 209 Click Here for Joanna’s Schedule

mailto:joanna_bieri@redlands.edu
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Announcements

Come to Lab! If you need help we are here to help!
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Day 16 Assignment - same drill.

1 Make sure you can Fork and Clone the Day16 repo from
Redlands-DATA101

2 Open the file Day16-HW.ipynb and start doing the problems.
• You can do these problems as you follow along with the lecture

notes and video.
3 Get as far as you can before class.
4 Submit what you have so far Commit and Push to Git.
5 Take the daily check in quiz on Canvas.
6 Come to class with lots of questions!

https://github.com/Redlands-DATA101
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Paris Paintings Data

To explore the ideas of modeling data we will use the Paris Paintings
dataset.

• Source: Printed catalogs of 28 auction sales in Paris, 1764 - 1780
(Historical Data)

• Data curators Sandra van Ginhoven and Hilary Coe Cronheim
(who were PhD students in the Duke Art, Law, and Markets
Initiative at the time of putting together this dataset) translated
and tabulated the catalogs

• 3393 paintings, their prices, and descriptive details from sales
catalogs over 60 variables

Variables in Paris Paintings Data

https://www2.stat.duke.edu/~cr173/Sta112_Fa16/data/paris_paintings.html
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Paris Paintings Data

name sale lot position dealer year origin_author origin_cat school_pntg diff_origin ... peasant othgenre singlefig portrait still_life discauth history allegory pastorale other
0 L1764-2 L1764 2 0.032787 L 1764 F O F 1 ... 0 0 0 0 0 0 0 0 0 0
1 L1764-3 L1764 3 0.049180 L 1764 I O I 1 ... 0 1 0 0 0 0 0 0 0 0
2 L1764-4 L1764 4 0.065574 L 1764 X O D/FL 1 ... 0 0 0 0 0 0 0 0 0 0
3 L1764-5a L1764 5 0.081967 L 1764 F O F 1 ... 0 0 0 0 0 0 0 0 0 0
4 L1764-5b L1764 5 0.081967 L 1764 F O F 1 ... 0 0 0 0 0 0 0 0 0 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
3388 R1764-498 R1764 498 0.992032 R 1764 F O F 1 ... 0 0 0 0 0 0 0 0 0 0
3389 R1764-499 R1764 499 0.994024 R 1764 F O F 1 ... 0 0 0 0 0 0 0 0 0 0
3390 R1764-500 R1764 500 0.996016 R 1764 F O F 1 ... 0 0 0 0 0 0 0 0 0 0
3391 R1764-502a R1764 502 1.000000 R 1764 F O F 1 ... 0 0 1 0 0 0 0 0 0 0
3392 R1764-502b R1764 502 1.000000 R 1764 F O F 1 ... 0 0 1 0 0 0 0 0 0 0
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Paris Paintings Data - Plot Height vs Width

Unable to display output for mime type(s): text/html
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Paris Paintings Data - Linear Regression

X = DF_model['Width_in'].values.reshape(-1, 1)
y = DF_model['Height_in'].values

LM = LinearRegression()
LM.fit(X, y)

LinearRegression()

Coefficient:
[0.78079641]
Intercept:
3.6214055418381896
Score:
0.6829467672722757



.
.
.

.

.
.
.

.

Testing for Linearity

How do we know if this is good?
We can always look at the score, 𝑅2, but this only tells us about the
average distance away from the prediction each of our data points is.
What could cause the metric to be low?

• Data having a high amount of scatter
• Data not actually being linear

How do we tell the difference?

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝐷𝑎𝑡𝑎𝑉 𝑎𝑙𝑢𝑒 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑉 𝑎𝑙𝑢𝑒
Add the prediction and the residual to our data frame!
LM.predict(X) = LM.intercept_ + LM.coef_*DF['Width_in']
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Testing for Linearity

Plot the residual
Now we can plot the residual - this gives us information about whether
or not the linear model was appropriate, even in there is a lot of scatter
in our data.

• Do a scatter plot of the Residual vs. the Predicted Value (Height).
• Add a line at y=0, to make the residual plot easier to interpret.
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Testing for Linearity

Plot the residual
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Interpreting Residual Plots
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What we are looking for

• Residuals distributed randomly around 0
• With no visible pattern along the x or y axes
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What we don’t want

Fan shapes



.
.
.

.

.
.
.

.

What we don’t want

Groups of patterns
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What we don’t want

Residuals correlated with predicted values
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What we don’t want

Any patterns!
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What does the residual plot tell us?

What patterns does the residuals plot reveal that should make us
question whether a linear model is a good fit for modeling the
relationship between height and width of paintings?

• We don’t want to see patterns whatsoever.
• All interesting relationships should have been captured by the

linear model
• Any pattern remaining means that the linear model is maybe not

the best fit - there is still something going on here.
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Look at the residual from Height vs Width
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How do we explore linearity?

Model for Price as a function of size with area of less than 10,000
inches squared.

LinearRegression()
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How do we explore linearity?
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What do we do if our data is not linear?

Sometimes we can apply a transformation to our response variable (in
this case price) that will help us “unpack” the nonlinearity. Lets look at
a histogram of the prices.

Unable to display output for mime type(s): application/vnd.plotly.v1+json, text/html
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What do we do if our data is not linear?

The price data is very skewed, this means that most of the data is to
one side of the histogram. In other words, most paintings sold for less
than 5000 (money = livres). Here we see extremely skewed data like
this, it looks like a decaying exponential function, so this might
influence us to apply a natural log function to the price data!
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Use the log()

Remember:

log(𝑒𝑥) = 𝑥

The natural log removes the exponential dependence. For us all of
these things are the same:

log(𝑥) = ln(𝑥) = log𝑒(𝑥)

Below we will apply the natural log to the price column and store that
data in a new column in our data frame:

DF_model2['log_price'] = np.log(DF_model2['price'])
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Use the log() - Histogram of Log Prices
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Scatter Plot of Log Prices
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Redo the Analysis for log_price vs size

LinearRegression()
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Redo the Analysis for log_price vs size

Coefficient:
[0.0002376]
Intercept:
4.911544880415433
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Redo the Analysis for log_price vs size

What is the model telling me?

̂log(𝑝𝑟𝑖𝑐𝑒) = 4.912 + 0.00024(𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐴𝑟𝑒𝑎)

How can we interpret this result so it actually makes sense in the
context of our problem?
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Redo the Analysis for log_price vs size

Properties of exponents and logs:

𝑒𝑙𝑜𝑔(𝑥) = 𝑥

log(𝑎) − log(𝑏) = 𝑙𝑜𝑔(𝑎/𝑏)
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Redo the Analysis for log_price vs size

If our surface area increase by 1 inch squared how much should our
price increase? Lets look at the difference in log prices if we increase by
an inch squared.

Plugging into our formula:

𝑙𝑜𝑔(𝑆𝐴+1)−𝑙𝑜𝑔(𝑆𝐴) = [4.898+0.00024(𝑆𝐴+1)]−[4.898+0.00024(𝑆𝐴)]

doing algebra on the right hand side
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Redo the Analysis for log_price vs size

𝑙𝑜𝑔(𝑆𝐴 + 1) − 𝑙𝑜𝑔(𝑆𝐴) = 0.00024

using the log subtraction rule
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Redo the Analysis for log_price vs size

𝑙𝑜𝑔 (𝑆𝐴 + 1
𝑆𝐴 ) = 0.00024

using the exponent undoing the log rule
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Redo the Analysis for log_price vs size

𝑆𝐴 + 1
𝑆𝐴 = 𝑒0.00024

calculating the exponent on the right hand side
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Redo the Analysis for log_price vs size

𝑆𝐴 + 1
𝑆𝐴 ∼ 1.0002400288023041

solving for 𝑆𝐴 + 1



.
.
.

.

.
.
.

.

Redo the Analysis for log_price vs size

(𝑆𝐴 + 1) ∼ 1.0002400288023041 ∗ 𝑆𝐴

So this tells us that increase the area of the painting by one square inch
increases the price by a factor of 1.0002400288023041 or about
0.024%.
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What did we learn…

There is a small positive increase in the price as the surface area
increases, on average. Can we predict the price using the surface area?

Result of LM.score(X,y):

0.013268243020669424

It does not appear that our logistic regression is a good predictor of the
price. Even though it looks like we captured a good linear relationship,
we do not have a good predictor. The scatter is still very large!

BUT - we are still able to see a linear trend in the model. There is a
relationship here even though the data is very noisy!
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Recap
• Non-constant variance is one of the most common model

violations, however it is usually fixable by transforming the
response (y) variable.

• The most common transformation when the response variable is
right skewed is the log transform: 𝑙𝑜𝑔(𝑦), especially useful when
the response variable is (extremely) right skewed.

• This transformation is also useful for variance stabilization.
• When using a log transformation on the response variable the

interpretation of the slope changes:

“For each unit increase in x, y is expected on average to be
higher/lower by a factor of 𝑒𝑏1 .”

• Another useful transformation is the square root: √𝑦, especially
useful when the response variable is counts.


