
.
.
.

.

.
.
.

.

Introduction to Data Science
Modeling with Multiple Predictors

Joanna Bieri DATA101

.
.
.

.

.
.
.

.

Important Information

• Email: joanna_bieri@redlands.edu
• Office Hours: Duke 209 Click Here for Joanna’s Schedule

mailto:joanna_bieri@redlands.edu

.
.
.

.

.
.
.

.

Announcements

Come to Lab! If you need help we are here to help!

.
.
.

.

.
.
.

.

Day 17 Assignment - same drill.

1 Make sure you can Fork and Clone the Day17 repo from
Redlands-DATA101

2 Open the file Day17-HW.ipynb and start doing the problems.
• You can do these problems as you follow along with the lecture

notes and video.
3 Get as far as you can before class.
4 Submit what you have so far Commit and Push to Git.
5 Take the daily check in quiz on Canvas.
6 Come to class with lots of questions!

https://github.com/Redlands-DATA101

.
.
.

.

.
.
.

.

Data: Book weight and volume

The allbacks data frame gives measurements on the volume and
weight of 15 books, some of which are paperback and some of which
are hardback

• Volume - cubic centimetres
• Area - square centimetres
• Weight - grams

.
.
.

.

.
.
.

.

Data: Book weight and volume

These books are from the bookshelf of J. H. Maindonald at Australian
National University.

This lab follows the Data Science in a Box units “Models with Multiple
Predictors” by Mine Çetinkaya-Rundel. It has been updated for our
class and translated to Python by Joanna Bieri.

.
.
.

.

.
.
.

.

Data: Book weight and volume
volume area weight cover

0 885 382 800 hb
1 1016 468 950 hb
2 1125 387 1050 hb
3 239 371 350 hb
4 701 371 750 hb
5 641 367 600 hb
6 1228 396 1075 hb
7 412 0 250 pb
8 953 0 700 pb
9 929 0 650 pb
10 1492 0 975 pb
11 419 0 350 pb
12 1010 0 950 pb
13 595 0 425 pb
14 1034 0 725 pb

.
.
.

.

.
.
.

.

Start with a simple linear model

We will try to predict a books weight using the volume. Before we do,
what are some things we should consider? Are there variables outside
of weight and volume that might affect our results?

.
.
.

.

.
.
.

.

Interpret this result

X = DF_model['volume'].values.reshape(-1,1)
Coefs:
[0.70863714]
Intercept:
107.679310613766
Score:
0.8026345746312898

.
.
.

.

.
.
.

.

Interpret this result

For every square centimeter the book is larger we expect the weight of
the book to increase by 0.7086 grams.

If a book has zero volume then we expect it to have a weight of 107.68
grams. This does not make sense! Why not? Because we are
extrapolating here. Notice none of our books are even close to zero
volume!

.
.
.

.

.
.
.

.

What else might affect the weight?
Well whether or not the book is hardback or paperback would definitely
change the weight! We will color our points by the cover type.

Do we notice a trend here? Well, it seems that more often the hard
bound books are above the prediction line! How could we fix this?

.
.
.

.

.
.
.

.

Add another explanatory variable!

First we notice that cover is a categorical variable that can take just
two values.

So we need to decide how to encode this variable. Since there are only
two options I we could encode pb=1 and hb=0 in our data frame using
a command like

DF_model['cover_enc'] = DF_model['cover'].apply
(lambda x: 1 if x == 'pb' else 0)

.
.
.

.

.
.
.

.

Add another explanatory variable!

Instead I am going to show you a new and very usefull command:

pd.get_dummies(DF,columns=[],dtype=float)

The get dummies command creates new columns in your data frame
for each possible category in the columns you provide. In our case we
are going to say

DF_model =
pd.get_dummies(DF_model, columns=['cover'], dtype=float)

and it will create two new columns in our data frame one for cover_hb
and the other for cover_pb

.
.
.

.

.
.
.

.

Add another explanatory variable!
weight volume prediction cover_hb cover_pb

0 800 885 734.823182 1.0 0.0
1 950 1016 827.654648 1.0 0.0
2 1050 1125 904.896097 1.0 0.0
3 350 239 277.043588 1.0 0.0
4 750 701 604.433948 1.0 0.0
5 600 641 561.915720 1.0 0.0
6 1075 1228 977.885723 1.0 0.0
7 250 412 399.637814 0.0 1.0
8 700 953 783.010508 0.0 1.0
9 650 929 766.003217 0.0 1.0
10 975 1492 1164.965929 0.0 1.0
11 350 419 404.598274 0.0 1.0
12 950 1010 823.402825 0.0 1.0
13 425 595 529.318411 0.0 1.0
14 725 1034 840.410117 0.0 1.0

X = DF_model[['volume','cover_hb','cover_pb']].values.reshape(-1,3)
Coefs:
[0.71795374 92.02363569 -92.02363569]
Intercept:
105.93920788192202
Score:
0.927477575682168

.
.
.

.

.
.
.

.

Interpret the result

How do we interpret this? Well you separate each of the explanatory
variables by a plus sign… we add them up. In general now the model
looks like

𝑦 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3 + 𝑏4𝑋4....

where 𝑋1, 𝑋2, 𝑋3, are each of your explanatory variables. For us

𝑋1 = volume

𝑋2 = cover type = hb

𝑋3 = cover type = pb

.
.
.

.

.
.
.

.

Interpret the result

So our equation is

𝑤𝑒𝑖𝑔ℎ𝑡 = 105.939 + 0.718(𝑣𝑜𝑙𝑢𝑚𝑒) + 92.023(ℎ𝑎𝑟𝑑𝑏𝑜𝑢𝑛𝑑)
−92.023(𝑝𝑎𝑝𝑒𝑟𝑏𝑎𝑐𝑘)

The variables ℎ𝑎𝑟𝑑𝑏𝑜𝑢𝑛𝑑 and 𝑝𝑎𝑝𝑒𝑟𝑏𝑎𝑐𝑘 take values of zero or one
depending on the book type.

.
.
.

.

.
.
.

.

Interpret the result

What does this tell me:
• All else held constant, on average paperbacks are 184.046 grams

lighter weight than hardback books.
• All else held constant, if you increase the volume by one square

centimeter then on average it’s weight will increase by 0.718
grams.

• Hardbound books with zero volume are expected to weigh 197
grams (extrapolated).

• Paperback books with zero volume are expected to weigh 13
grams (extrapolated).

• We also see that we get a better 𝑅2 when we use two explanatory
variables!

.
.
.

.

.
.
.

.

Interpret the result

Let’s look at a plot of this data. Here I plotted two separate lines one
for hard bound and the other for paper back.

.
.
.

.

.
.
.

.

Types of effects

• A main effect refers to the independent impact of one variable on
the dependent variable. This means that each of our variables are
in linear combination:

𝑤𝑒𝑖𝑔ℎ𝑡 = 197.963 + 0.718(𝑣𝑜𝑙𝑢𝑚𝑒) − 184.047(𝑐𝑜𝑣𝑒𝑟𝑡𝑦𝑝𝑒)

so the weight changes at the same rate regardless of whether or not
we are modeling paperback or hardback books. In both cases as the
volume increase the weight increases by 0.718. Does this make sense?

.
.
.

.

.
.
.

.

Types of effects

• An interaction effect occurs when the effect of one variable
changes depending on the level of another variable.

Maybe we should have different slopes for theses lines. Do hardback
book get heavier per square centimeter?

Should we try to account for this?

Should we add interaction effects?

.
.
.

.

.
.
.

.

In pursuit of Occam’s razor

• Occam’s Razor states that among competing hypotheses that
predict equally well, the one with the fewest assumptions should
be selected.

• Model selection follows this principle.
• We only want to add another variable to the model if the addition

of that variable brings something valuable in terms of predictive
power to the model.

• In other words, we prefer the simplest best model.

.
.
.

.

.
.
.

.

Try modeling an interaction

We can do this by engineering some new features (variables) in our
data. Let’s try adding a variable to our model that is the cover type
times the volume. The interaction between cover_hb and volume.

DF_model['cov_vol'] = DF_model['cover_hb']*DF_model['volume']

.
.
.

.

.
.
.

.

Try modeling an interaction

Now we will train a new linear model using three explanatory variables:

𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑏0 + 𝑏1(𝑣𝑜𝑙𝑢𝑚𝑒) + 𝑏2(ℎ𝑎𝑟𝑑𝑏𝑜𝑢𝑛𝑑)+
𝑏3(𝑝𝑎𝑝𝑒𝑟𝑏𝑎𝑐𝑘) + 𝑏4(ℎ𝑎𝑟𝑑𝑏𝑜𝑢𝑛𝑑 ∗ 𝑣𝑜𝑙𝑢𝑚𝑒)

.
.
.

.

.
.
.

.

Try modeling an interaction

X = DF_model[['volume','cover_hb', 'cover_pb','cov_vol']].values.reshape(-1,4)
Coefs:
[0.68585918 60.10703285 -60.10703285 0.07573366]
Intercept:
101.4795085635086
Score:
0.9297136949284579

.
.
.

.

.
.
.

.

Try modeling an interaction

.
.
.

.

.
.
.

.

How much did this help?

• The graphs look very similar. In the second graph the two lines
have different slopes with the hardbound slope being slightly
larger.

• The two models have similar scores:
• Main Effect Model Score = 0.9274775756821679
• Interaction Effect Model Score = 0.9297136949284579
• The interaction model does a slightly better job of explaining the

variability in the response variable but it adds complexity.

.
.
.

.

.
.
.

.

How much did this help?

What does Occam’s Razor say?

𝑅2 does a good job at looking at one model, but not a great job of
comparing models because more variables will tend to make 𝑅2 better.
We need to account for the number of variables and the number of
observations.

.
.
.

.

.
.
.

.

Adjusted 𝑅2

𝑎𝑑𝑗𝑅2 = 1– ((1 − 𝑅2) (𝑛 − 1)
(𝑛 − 𝑘 − 1))

where
• R2: The R2 of the model
• n: The number of observations
• k: The number of predictor variables

This assigned a penalty for putting in lots of extra variables

.
.
.

.

.
.
.

.

Adjusted 𝑅2

In our case 𝑛 = 15 or len(DF), 𝑘 = 3 for the first model and 𝑘 = 4 for
the second model.

Model 1
Rsq = 0.9274775756821679
k = 3
n = len(DF)
AdjRsq = 1-((1-Rsq)*(n-1)/(n-k-1))

Adjusted R2 for Model 1
0.9076987326863956

Adjusted R2 for Model 2
0.901599172899841

.
.
.

.

.
.
.

.

Adjusted 𝑅2 results

We see that model 2 has a lower adjusted 𝑅2 value so we are probably
better sticking with the original model. It is simpler (uses fewer
variables) and gets a good 𝑅2 value!

